用户登录

|
智能化开关柜

大全伊顿智能化开关柜配套产品,目前只能整体从其他厂家采购,无自主相关知识产权,目前有以下技术需求:1、10kV开关柜在线测温技术和系统。通过收集和分析高压开关柜运行中温度故障类型和相应的处理对策,应用概率性推理的方式建立。在温度异常时会报警提示甚至停止运行。2 、断路器机械特性检测单元。通过行程传感器提取断路器机构运动曲线,实时监测断路器机械运动状况,实现合分闸时间与速度、触头开距、超行程、分闸反弹幅值和合分闸过冲的在线监测,通过多维状态参数分析,(科技成果评价)直观量化断路器机构的健康状态,有效识别机械部件的早期故障。3、二次元件监测(线圈/电机)。对电机的电流和动作时间来分析各操作机构的特性,提前发现拒动、误动等故障征兆及机械寿命判断,并及时发出报警。4、智能控制终端测量、控制、监测、显示等功能一体化集成的智能监测单元,就地信号就地分析和处理,兼具电流电压采集与显示、继电保护和故障信息显示、在线监测与显示、程序化控制、实时视频查看、电能质量分析、历史数据查询和显示、自诊断等多功能于一体。5、综合自动化系统具备以下功能:数据采集与监视功能、“四摇”功能展示、事故报警和记录功能、人机交互显示、授权及安全性功能、系统自诊断和自恢复功能、Web端访问等功能。6、中压开关柜(3.3kV~40.5kV)在设计时,工程师不能了解开关柜内部场强分布和导体电流薄弱点情况,存在很大隐患。需要通过仿真软件,实现提前预判。希望达到的技术指标:(1)开关柜在额定电压下,开关柜内场强分布情况;(2)开关柜在额定电流情况下,柜内导电体电流薄弱点分布情况;当电流大于4000A,母排规格如何选择,如何搭接;(3)开关柜在额定电压情况下,对开关柜框架部件发热影响,如何避免框架部件发热,采用何种材质

技术难题
氢燃料汽车电池等设备相关技术方面的提升

1.氢燃料电池汽车的能源利用能力提升。2.氢燃料电池汽车的加氢设备的更新、便捷、安全化3、氢燃料电池汽车装配结构、技艺创新

技术难题
双导程蜗杆回转减速机研发

1、需求内容主要技术:采用先进的加工技术和高精密的组装技术,开发JDLB高精密双导程蜗轮蜗杆减速器,确保齿部的正确咬合,减少了齿面的接触应力。采用正交精密蜗轮蜗杆设计,实现超高精度小于1孤分,非常适合于对精度有苛刻要求的机械运动,与行星齿轮减速机具有可替代性,节省安装空间,降低使用成本。2、现有基础:目前针对产品使用久了间隙变大后,会大大降低设备的精度的难题,开展了特殊定制化伺服法兰设计。设立专项研发资金,配备了专职人员进行项目研发。

技术难题
全自动智能分类搬运机器人

基于视觉数据,融合激光雷达、惯性导航和里程仪等感知手段,实现自动建图、定位、路径规划和导航等功能,多传感器联合识别,实现高于5cm障碍物的全方位避障功能,自动驶向无线充电站,实现全天候自动运行,最大负载1500kg,可配合叉车完成长距离的自动搬运工作机器人用于仓储和生产线,可自动完成托盘拣选、边线运送、在制品运送和成品存放等物料处理作业。

技术难题
大载荷平面涡卷弹簧的研制

项目名称:电气化铁路、城市轨道交通接触网供电系统恒张力弹簧补偿装置用高性能平面涡卷弹簧。项目内容:通过变直径的轨轮将平面涡卷弹簧呈现几何规律变化的扭矩,转换成恒定的张力输出。弹簧技术指标:1、基本要求:弹簧能在其使用寿命期间按规定的环境温度-40℃~+40℃条件下使用。2、材料要求:1弹簧材料采用EN10132-4(2000)的规定,采用牌号为51CrV4 的材料。2弹簧材料表面应光滑,不得有肉眼可见的有害缺陷。3弹簧材料两端侧面成圆弧。4弹簧材料必须经热处理,其硬度值范围为HRC46~48。5弹簧材料经热处理后,单面脱碳层深度允许为原材料厚度尺寸的0.25%。3、表面质量:1弹簧各圈应过渡均匀,不允许有明显的凹凸现象。2弹簧表面应做防腐处理。4、精度要求:1弹簧各圈应在垂直于涡旋中心线的同一平面上,其平面度公差应不大于2mm。2弹簧内径的极限偏差为±0.5mm。5、性能要求:1弹簧每一对应点转矩与进程输出转矩和回程输出转矩的平均转矩偏差应不大于3%。2弹簧的疲劳试验次数为20000 次(完成一个从起点到终点再到起点的双向疲劳循环的过程,每个循环疲劳计为1 次),弹簧加速试验的施加速度3 次/min。经疲劳试验后的弹簧应满足应力松弛率εP≤5%的要求。整机技术需求:前期整机研发已经完成,目前平面涡卷弹簧采用德国进口,整机的主要性能指标均符合下列要求:1、恒张力弹簧补偿装置工作行程:0-1300mm。2、整机张力偏差±4%,需经过两万次工作行程往返20000次疲劳试验,且张力衰减小于2%。鉴于德国进口弹簧,一方面整机成本居高不下,另外供货周期较长,希望能够通过国内的技术突破,以增加产品各市场竞争优势。

技术难题
商用车制动系气路管理系统

(1)研究双塔气路过滤净化系统性能匹配方法,设计高可靠级串联结,提高制动气源的洁净程度;(2)建立气路管理系统全维度健康评价指标,构制动压缩空、温湿度等多状态参数联合解耦的软测量方法;(科技成果评价)(3)以低能耗、高可靠为目标研究复杂工况下电控空气干燥器动压机以及低温间隙调制加热的智能联动控策略;(4)研发空气管理系统中包含双过滤塔介质在内的核心部件可靠度、平均剩余寿命等健康参数预测方法。

技术难题